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Lecture 10

Graphs: A graph is a pair (V,E), where V is called the set of vertices and E is called the set
of edges. Edges are pairs of vertices and represent some form of connection between two vertices.
Many pieces of data can be thought of in a graph representation. For example, we can think of the
Facebook graph: there would be one vertex for each person on Facebook, and an edge exists between
two people if they are friends. Such graphs are called undirected, meaning that the the connection
an edge represents between two vertices is mutual: if you and I form an edge on Facebook then I
am your friend, and you are also my friend. The Twitter graph on the other hand is not undirected.
Suppose an edge (x,y) means that x follows y on Twitter. Then John may follow Bob, but Bob may
not follow John, which means the graph would have the edge (John, Bob) but not (Bob, John).
Graphs in which an edge (x,y) are treated as being different from (y,x), such as the Twitter graph,
are called directed.

Graph examples:

• Social networks (Facebook, MySpace, Twitter, Google+, . . .). People are vertices, and edges
mean friendship/following/etc.

• The web graph. Web pages are vertices, and an edge (x,y) means page x has a link to page y.

• Road networks. Street intersections are vertices, and an edge (x,y) means a person at inter-
section x can reach intersection y by a segment of road.

• Airport networks. Airports are vertices, and an edge (x,y) means there’s a direct flight from
x to y.

• Family trees. People are vertices, and an edge (x,y) means x is one of the parents of y.

Today we discuss algorithms to answer a few basic questions about graphs. Before doing that
though, we have to discuss how the graph is given as input to the computer. The two most popular
ways of specifying a graph are via an adjacency matrix or an adjacency list.
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Figure 1: Example undirected graph.

Suppose the graph has n vertices, which we label from 0 to n− 1. Then, an adjacency matrix
is simply a list A of n lists, where each list is of size n. The entry A[i][j] is True if the edge
(i, j) exists in the graph, and otherwise it is False. For example, we could represent the graph in
Figure 1 as follows:

A = [[False, True, True, False], [True, False, True, True],

[True, True, False, False], [False, True, False, False]].
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In adjacency list representation, we have a variable A which is a list of n lists. The ith list
contains a list of all vertices j such that (i, j) is an edge in the graph. So, we could represent Figure
1 in adjacency list representation as follows:

A = [[1, 2], [0, 2, 3], [0, 1], [1]].

Each representation has its own advantages, and the situation should dictate which one is best
to use. For example, the adjacency matrix representation always requires Θ(n2) memory, whereas
the adjacency list representation can take much less memory if the graph has few edges. Meanwhile,
the adjacency matrix representation can tell you whether i has an edge to j in O(1) time (just look
at A[i][j]), whereas it could take Ω(n) time in the adjacency list representation if i has many edges,
since you might have to scan the entire ith list.

Graph exploration: Now we will cover algorithms to answer some of the most basic questions
about graphs. These are questions such as:

• Connectedness: Given vertices i, j, are they connected? That is, is there a path from i to
j? A path is just a sequence of edges that share endpoints. In other words, can I start at i,
follow some sequence of edges, then end up at j?

• Connected components: A connected a component of an undirected graph is a set of
vertices that are all connected to each other via paths, and are not connected to anything
else.

• Shortest path: Given vertices i, j, what’s the shortest number of edges you have to cross
to get from i to j?

We will be able to answer the questions above using search algorithms known as depth-first
search and bread-first search. First, we will need to discuss two data structures known as the stack
and the queue.

• A stack is a collection of data items that supports two operations: push(x) and pop().
push(x) puts the item x at the top of the stack, and pop() returns the item at the top of the
stack then deletes it from the stack. You should picture a stack of papers: when you want
the next paper you just take it off the top (pop()), and when you add to the pile you just
put it on the top (push()).

• A queue is a collection of data items that also supports push(x) and pop(), but they work
in different ways. Now you should imagine the data items sitting in a line, like at a movie
theater. When a new person enters a line, he enters the back, and the next person to be
taken from the line is the one at the front. Programming queues work in the same way: new
data items are pushed onto the back of the queue, and pop() returns the item at the front of
the queue then deletes it from the queue.

Stacks support what is known as LIFO (last-in-first-out) since the last item to enter the stack
is the first one to be popped out. Meanwhile, queues are FIFO (first-in-first-out).

Stacks and queues are easily implemented in Python using the list, though for efficiency
reasons it’s recommended that you use the deque data structure built into Python.
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# Using a stack

stack = []

stack.append(5) # a push operation; same as stack += [5]

stack.append(6)

y = stack.pop() # stack is now [5], and y is 6

y = stack.pop() # stack is now [], and y is 5

# Using a queue

from collections import deque

queue = deque()

queue.append(5) # a push operation; same as queue += [5]

queue.append(6)

y = queue.popleft() # queue is now [6], and y is 5

y = queue.popleft() # queue is now [], and y is 6

We are now ready to cover the two graph-exploration algorithms depth-first search and breadth-
first search. Below are the algorithms assuming the graph is given in adjacency list representation.

Depth-first search

def visit(x, stack, visited):

visited[x] = True

stack += [x] # push x

# do a depth-first search (dfs) from vertex v, where A is the

# adjacency list of the graph

def dfs(A, v):

visited = [False]*len(A)

stack = []

visit(v, stack, visited)

while len(stack) > 0:

x = stack.pop()

for y in A[x]:

if not visited[y]:

visit(y, stack, visited)

A recursive implementation would have the same effect since recursion is implemented using a
stack:

def visit(x, visited):

visited[x] = True

for y in A[x]:

if not visited[y]:

visit(y, visited)

# do a depth-first search (dfs) from vertex v, where A is the
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# adjacency list of the graph

def dfs(A, v):

visited = [False]*len(A)

visit(v, visited)

Breadth-first search

from collections import deque

def visit(x, queue, visited):

visited[x] = True

queue += [x] # push x

# do a breadth-first search (bfs) from vertex v, where A is the

# adjacency list of the graph

def bfs(A, v):

visited = [False]*len(A)

queue = deque()

visit(v, queue, visited)

while len(queue) > 0:

x = queue.popleft()

for y in A[x]:

if not visited[y]:

visit(y, queue, visited)

The dfs and bfs algorithms for graph exploration are quite similar, except that the former uses
a stack and the latter uses a queue. This has an effect on the order in which vertices are visited.
Consider the two following pictures, each of the same graph, but one visited in dfs order and the
other in bfs order.
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Figure 2: The same graph, being visited in dfs order on the left, and in bfs order on the right. The
numbers represent the order in which the vertices are visited (0 is visited first, and 12 last).

In effect, bfs order visits all vertices which are distance 1 away from the start first, then all
vertices which are distance 2 away, etc. Meanwhile, dfs keeps following edges until it hits a dead
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end, then it backtracks until the last time it wasn’t at a dead end and follows the other branch(es).
Given dfs and bfs, answering some of the questions above is simple. To test whether a vertex i

is connected to a vertex j via some path, we just dfs or bfs from i and check whether we ever pop j
off the stack in the while loop. To find connected components, we can dfs or bfs from every vertex
in a graph and see which other vertices get visited (and once a vertex is visited, we have found its
connected component, so we don’t have to initiate a dfs or bfs from it). To find a shortest path
from i to j, we can use bfs since it visits vertices in order of their distance from the starting point.
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